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' SOME CONSIDERATIONS ONIAN ATRFOTL IN
AN OSCILLATING STREAM
"By J. Mayo Greenbarg ,
. SUMMARY

The velocity votential, 1ift force, moment ‘and propulsive
force on a two-dimensional airfoil in a stream of periodically
varying engle of attack have Peen Aerived on the basis of non-
stationary incompressible potential-flow theory which includes
the effect of the continuous sheet of vortices shed from the
trailing edge. Application of these results was made in an,
anslysis of the variation with fregquency of the propulslve force
on an airfoil in an oscillating etream and in an anelysis of the
problem of forced vibrations of an airfoll in an oscillating
stream with consideration of the stiffness of the airfoil and
the position of its torsion axis. It was shown that when the
torsion axis of the airfoil 1s ahead of the quarter-chord point
the amplitude of vibrations i1s generally not large, but when the
torsion axis is behind the quarter-chord point certain conditlons
exist under which dangesrous amplitudes of vibration may occur.
7he nonuniform response which was found for a freely hinged
airfoil restricts the use of such a device as a flow-measuring

instrument to the measurement of only very low-frequerncy angular .-

. variations In an coscillating stream.

It is expected'that the results of the theoretical treatment
of the propulsive force will be useful in considerations of
counterrotating-propeller efficlencies and that the analysis of
the problem of forced vibrations will be useful in design con-
slderations of 1lifting surfaces operating in oscillating streams;
for ex&mnle, wind-tunnel fan blades behind a set of prerqtation
vanes, or tail surfaces in fluctuating wakes.

INTRODUCTION

The phenomenon of an airfoil in an oscillatina streanm (that
is, & stream of which the angle of attack veries neriodirally) is
encountered in many phases of aeronautics. For example, the
effect of & set of prerotation vanes upon a wind-tumnel fan blade
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18 to produce periodic disturbances through which the fan blades
pags. Further, a consideration of counterrotating propellers
shows that the rearward blades operating in the helical wake
produced by the forward blades are in a stream of varying angle
of attack. As another example, the horlzontsl tall of an alr-
plane may be subjected to forces induced by fluctuations in the
engle of the wing wake.

The theory of nonstationary motion around airfolls with
consideration of partial motions of the fluld has been developed
by Garrick (reference 1), Kilssner (reference 2), and others. The
pregent alternative treatment lesds to & value for the 1lift force
on an alrfoll 1n an osclllating stream which is in agrsement
with that obtained in references 1 and 2. The treatment in
reference 2 leads to general results for the propulsive force.
The present vaper, employlng somewhat different derlvations,
glves explicilt results for the propulsion as well as for the
1lift on an alrfoll in an oscillating stream.

Two problems whlch arise in cases of oscillating flows
are (1) the production of vibrations and (2) the so-called .
"Katzmayr effect" {reference 3) or existence of a propulsive
force. With regard-to problem (1) the object of the present
paver is to examine theoretically the dynamics of an airfoll in
en oscillating stresm and to determine wmdsr what conditions
dangerous amplitudes of vibration mey occur. A special case
for which the torsionsl stiffness is zero 1s treatsd with a
view to the posslbility of using a small freely hinged alrfoil
as a device for measuring the angular amplltuvde of .an oscillating
stream. Previous work on this problem (reference 4) has been
done for the case in which the stiffness of the alrfoll was
expected to glve large vibrations., With regard to problem (2),
which is of importance in considerstions of counterrotating-
propeller efficiencles, & theoretical investigation is made of
the horizontal forces experienced by an airfoil in an oscillating
streanm.

The theoretical development is divided into three parts:
(l) derivation of the 1lift force and moment acting on an airfoll
in an oscillating stream, (2) derivation of the propulsive force,
and. (3) derivation and solution of the equation of motion of an
alrfoil executing torsional vibrations in en oscillating stream.
The theoretical methods used in the derivation of the 1lift forces
end momente coneist In an extension of the methods of Theodorsen - .-
(reference 5). For the derivation of the propulsive force
application 1s made of the method outlined by von Kermén end .
Burgers (reference 6 pp. 52 and 306). The following usvel assump-
tions are made throughout: (a) incompressible potential flow, v
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(b) two-dimensional flat-plate alrfoll, (c) emall oscillations,
and (d) plans wake extending from 'bra.iling edge to infinity.

SYMBOLS

b half chord of airfoil : | )

8 x-coordinate of torsion axils 6f alrfoll T

o angle of attack of ailrfoil’ measured. clockwlse. from
horizontal -

B angle of glrstream from msan direction.measured
pogitive counterclockwise

x horlzontal coo_rdinatel;.:ﬁondimensional with respect to b

t time o

v L siu‘.ream velocitlv

v ) frequency <2 )

o . eircular freguency

k rediced frequency < >

- (k) .Theodorsen s C-function from reference 5 (F + 1G)

F,G R .T::rea}. ar;d magimry parts of C—-function -

D o local sta.tic pressure

o} a:Lr densi’cy : ‘

P . C perpendicular fom:e

| Ma o pi'bching momen't a‘bout .. X --- a:. measured positive
counterclockwise

a moment of inertls sbout x = a

Rg torsional stiffness of wing

8 propulsive force
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noncirculatory veloclty potential

ciroculatory veloclity potential

strength of wake discontinuilty

phase angle

Begsel functions of the firet kind and zero and
first order -

Bessel function of.the second kind and zero and
firet order

" strength of vorticity distribution on the airfoll

mass per unit length of_wing

I
8

radius of gyration divided by b ne
wh2
ratio of mass of cylinder of air of dlameter equal
to chord of wing to mass of wing (?Hﬂl-

constant

LIFT FORCE AND PITCHING MOMENT

In accordance with Theodorsen (reference 5) the forces due to
the noncirculatory flow and. to the effect of the wake are treated

separately.

Noncirculatory force and moment.- Consider an alrfoil of

chord 2b at zero angle of attack with respect to the averags
direction of a sinusoidal stream traveling to the right (fig. 1).
If the amplitude Bp of angle-of-attack change in the stream is
small then the horizontal and verticsal components of the velocity,
respectively, are given by .

VL, =Vcos BV

vp=v 8ln B & vB
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where, wlth the amsumption of sinusoidel osclllatlions,
B = Boei(a)'b-lm)

Thus, the alrfoill may ‘o'e considered as being in & uniform
horizontal stream of velocity .v plus & vertical sinusoidal
gust of the form

e(x) = vﬁgei(mt-kx)

The velocity potential ¢ for such a normal-velocity distribubtion
is (appendix A)

k
- bVBQ |/l i((D'b 'lCXf) L/\ Qiux ro(u) du (l)
0

vhere Jo(u) is a Bessel function of the first kind and zero
ordar.

Use of the equation of motion for nonstatlionary flow gives

v fo. 18\
— -+ =
3t V(p 2" )
where
W fluid velocity

P local ,éta'bic pressure -

o air density
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and the svbebitution w=+v + %;% gives the pressure differsnce ‘Ap
at the point x as

;p--ep<§§+§) - (2;

Integration of this local pressure difference over the length of
the sirfoil gives ag the. total force P (see. appendix B, equation (BS))

P= 2nipbveﬂoJ 1 (¥) ot (3)

where Jp(k} is a Bessel function of the first kind end first
order.. -

The nonciroulatory moment about x = a (fig. 2} 1s obtained
from the integral

1 .
Ma"bef Mp(x - a) dx
-1
vhich yields (appendix B, equetion (B16)) -

M, = -nébgvaﬂoei&t[QiaJl(k) + Jo(k)] | (%)

Circulatory force and moment.- The vélocity potential of an
element of vorticity ~Al' at a position xp in the wake and its
mate AI' distributed over the airfoil is (reference 5)

I é]: ‘ban"lﬁ"‘:-‘-g sxoe - l | (5)
27 I)CO _ DN .

Q.
XX0 1
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The element -Al' moves to the right relative to the airfoil with
a velocity v. Thus,

Pxxp _ vaq’xxo
ot axo
o

Substituting this expression and —-% into equation (2) and
Integrating the offect of the entire wake on the ailrfoil yields the

force
P=-pvbf7-=&-—_*U (6)
1 Yx2 -1 o

where U dxy 15 the element of vorticity ATD' at the point X

The Kutta condition reguires that at the trailing edge of
the plate the induced velocity equals zero; therefore, at x =1

E; Gy "'q’)]x:l =0

where

‘f’r“‘bj:“’nofho

Introducing the potential ¢ from equation (1) results in

1 “‘/’CO"'I VRO _i(at-k £y
o L xo-ldeoa:-—E—e(‘” ) h/;’ euJo(u)d.u (7)
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Let

: .o
Q= - _‘_’%)_ ei(w't-k) | L el JO(u) du (8)

where u is an mtegré.ting vaerisble. Equation (8) becomes
(appendix C)

Q = -vBy [To) - 17(x)] ot (9)

Combining equations (6), (7), and (8) and assuming the wake to be
of the form o -

U = Yellat-ixo)
gives for the circulatory force

' -1
fm ._.__x_o,.__. 6 _kxo dxg
1 '/xO - 1. : (10)

/ xo+1'~ikxodxo

P = -2npvbQ

Similarly, the circﬁatow moment which 1s obtalned f_rom

1
Ma=b2f Ap{x - a) dx
-1

o
%) - (12)

xo -ikxp
—=?==== e dxo
(/; ‘/xo -1

is (reference 5)

M, = -2npvb?Q | L. <a +
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The integral expressi:n in equations (10) and (11} is Theodorsen's C-
function (reference 5). Thus,

P = én;abveaoé(k) j[Jo'(k) - iJl(k)]I o108 . (12)

and

M, = 2roveb2p, [-32- - Qa,+_ .Bc'(k)] {E]‘O(k) - 1Jl(k)]eiﬂ>’° (13)
Adding equaxiéﬁs {3) and (12) gives for the total force

P= eﬁ;:bv2f30 t:(k) Jo(k) = iJl(k)] + 17, (k) olwt (1k)

+

This sxpression agrees with that giveﬁ by Gerrick (reference lj and
Kusener {reference 2) in which somevwhat different methods of
derivation are used from those used in the present paper.

Adding equations (4) and (13) gives, for the total moment
gbout x = a,

M, = -mpbvap, 21a7; (K) + Jo(k)]eiw’G

+ 2@2#50[% - <a + 9C(kﬂ [Io(k) - 17y (k) [o10F (15)

Examination of equations (14) and (15) leads to

Ma=~b<a+-9P :

This equation means that the center of pressure is at the quarter-
chord point of the airfoil.
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PROPULSIVE FORCE .

According to von Karmsn,. and Burgérs'(féference 6, p. 52), if
the strength of the vortioity distribution at the leading edge of
the plate is of “the form

. 16
XF L (?h Vx + 1 ‘>x 1 (26)

then the suction or propulsive Porce acting on the alrfoil a. has the
value

g =£ﬁ602. . . (17)

wvhere C is & constent. The vortex strength is glven by the pum
of the tangential velocities on the twe sides. 'Thus .

7”(%2 Sy

and, thercfore,

! 3
°= ["fé’“ &' )J ] | o

‘Carrying out the indicated calculations in appendix D leeds to -

et - - . —

Yo - 1(Jp + Y1) |
T+ Yy 4 1(3g - Yi)

C = -E Vﬁo i&)‘b (TO + 1Jl) (Jo L iJl>

o
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vhere. J, means J o{k) end so forth end Yo(k) end Y,(k) are
Bessel functions of the second kind and of the zero and first order.
The real part of this eqiation 5s : .

PR/ *
.

c = b VB()(V(X + ‘.(3 cos- (.u:c-.-.._ﬂx - Y) sin a:'b)

vhere _
X = (-).1&)2 1. v
co @y CommE Gy e
k
[kbo - ¥)% e (g ¥ Yo):]
and finally
8 = :fpbvesa‘e (x + Y cos_?ufc -2 s:?n 'an‘b') (19)
where ‘ !
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DYNAMICS OF AN ATRFOIL IN AN OSCILLATING STREAM

The problem treated herein 1s that of an alrfoll exscuting
torsional vibrations in an osclllating stream. Because of assump-
tions (c) and (d) of the Introduction - namely, that the oscillations
are small and thet the weke is plane - the aserodynamic moments due
to partial motions of the fluid and those due $» motions of the
sirfoil can be treated independently.

The pltching moment acting on an airfoil undsrgoing angular
oscilla,tions in & wniform stream is (reference 5)

e o g9
cetlo Jofeesg- ] @

Thus, the total asrodynamic moment acting on an oscillating
airfoil in an oscillating stream is the sum of equations (15)
.and (20). The equation of motion is obtained by expressing the
equilibrium of the aerodynaemic moment, the moment of inertia,

and the mechanical restoring moment. Thus, if structural damping
is neglected, the eguation of motion is

Aerodynamic mement = I & + R0 (21)
where

I moment of -inertia gbout x = a ' e _—

)
Rg - torsional stiffness

Coubining equations (J..b‘.); (20), and {21) give;
E‘a +R(§+a?]m+-—-(l )l}-e@+3,‘;)0(k)]é
* Eb? _ v @ * 2)0(1‘)]

= -.2%% é + £)Bo &(Q)(Jol- 1_J‘l) + iJl]ei"“’ (22)



wvhere
m maas per unlt length of wing

T
> radiuve of gyration divided by b (llzgli)
nhe

2
K ratio of mass of cylinder of air of dlemeter equal to chord of wing to mass of wing (?%?*)

The differential equation (22) is an equation for forced vibrations, the solution to which is”
Pound by letting '

: : a = aget{ot¥) A (23)
_where _ . ,
aop emplitude of angular oeclllations of the wing ‘ . -
¥ phase” factor '

The ratio of the amplitude of airfoil oscillations to the amplituds of stream oacillatiuna
will be. celled the response of the airfoil. If the right-band side of equation (23) is
substituted into squation (22), after smcmevwhat lengthy but straightforward calculations the
square of the response of the airfoll 1s found to be

GOO) (“; f(m()»,c; )2 4 (3 + 63, -FJJ)E]
R e M

(24)
vhere TF(k) + iG(k) = ¢{k), Theodorden a C-function.

SLET “ON NI VOVN

€T
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DISCUSSION OF RESULIS

Propul.sive force.- It has been shown (see equation (19)) that .
the propulsive force . acting on a fixed airfoll at zero angle of
attack in an oscillating stream is

‘B = ﬂpb?eﬁoe(X‘+ Y cos 2wt - Z oin Swt)

Since 2x§bv25 is.the,étationary value of the lift on an sirfoll
et angls of attack BO,' let

I = 2ﬂpr2

Then T

LOBO (X + Y cos 2wt -~ Z sin amﬁ) (25)

and the average value of g is

LoPo !
8=

In figures 3 and ¥ curves are presented that show the variation
with wave lengths of stream oscillations of the coefficlents X Y,
end Z apnearing in the equation for the propulslve force. For very
lew frequencles - that is, for long wave lengths of atream oscilla-
tions ~ X end Y aporoach the value 1, and % becomes zero. Thus,
as k-0, equation (25) becomes

L
x5 020 {1 + cos 2wt) (26)

This result 14 exactly that which is to be expected from quagi-
stationary consideratlons in which the 1ift is assumed to be
instantanecusly that value prescribed by the geometrical angle of
attack; that is, the shed vorticity produced by variations in
angle of attack 1s assumed to appear ingtantaneously at a point
inf*nitely distant from the airfoil. Thus (see fig. 5) the
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perpendicular force L on an airfoil at angle of attack 8 with
respect to the stream is

L= 21rpv2'bB

and because from well~known considerations of two-diménsional
flows there can be no induced drag, the prooulsive force qmst be

8 = ILB = 2npbveps

and if B=30cosaﬁ;,:

m
1

2:rp‘bv21302cosewt

N\
LOBOGQ" + & cos %9

vhich is the samé as equation (26).

The reason for plotting the coefficients Y end Z againat k

es well as against %,‘Where -2-%‘2 ls the wave length of stream

oscillations, 1s that in the neighborhood of % = 0 +the values of

Y and Z fluctuate infinitely many times. This behavior is
brought out in figure & where it may be sSeen that between .

k=1 (%{: 3) and k =o % = CD the curves oscillate about
zero with decreasing emplitude.

Forced vibrations.- An analysis is made of the response {see
equation.(24)) of an airfoil in an oscillating stream with particular
emphasis on the paremeters a and R,, these parameters having
qualitative as well as quantitgtive effects on the values of the
response. .The stiffnese in torsion R, 1is related to the natural
frequency V' for zero stream veloclty by the equation
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vi_®

(27)

1 Ra
L“‘ T
2n I, + 7Ob (% + ag>

where Ia + ﬂpbk % + a° is the total moment of inertia of the
airfoil. From equation (27),

PR
R@ = x'? [ . 4 (% + a%i]
2kmy2 2 K 8 :

]
where k' = @F,
v

In figure 6 are shown rosponse curves for an airfoil hinged at
the leading edge (a = -1.0) and having various natural frequenciles 5
of oscillation. The following values of the parsmeters x and Tp
were chosen as beng within the practical range of application:
K = 0.0653; ra?_= § (flat-plate maas &1Btribution), The response

for any natural frequency 1s never very large{st most about 0 . 2.%)

Po
and the response decreases with Increasing stiffness. The
value of the streem frequency at which maximum response cccurs is
seen to correspond more closely to V' as the natural frequency
increases. Xven for a freely hinged airfoil (k' = 0)- & sort of
resonence frequency exists. (See fig. 7.) Thus the use of such
& device for measuring angvlar variations in an oscillating streem .
vould be valid only in the range of very low reduced frequency (long
wave lengths) in witich the response anproasches unity. .

Somewhat different phenomena cccur when the hinge point is
behind the quarter-chord point of the airfoil. In general it may
be stated that the response ie agreater. In particular g critical
stiffness exists below which the airfoil is in unstable equilibrium.
The condition for divergent motions of the airfoil is that the
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coefficient of o in souation (22) be less than or equal to Q
for k = 0. The critical stiffness, therefore, is defined by

R
a2=&+
28mv

i) (o

In figure 8 are presented some results for the hinge pleced
near the center of the alrfoil. The values of the parameters e,
K, and rae chosen were: a = -0.1, k& = 0.0653, and ra? = 2. .

The reduced critical frequency for this case is k' = 0.385. For
stiffness values somevhat higher then the critical, the response
is not wnduly large and again, as when the hinge was at the
leading edge, the maximvm response with larse valves of the
stiffness occurs at a stream frequency close to the frequency v',

CONCLUSIONS

The velocilty potential, 1ift force, moment, and propulsive
force on a two-dimensional airfoil in a stream of periodically
varying angle of attack has been derived on the basis of non-
stationary incompressible potential-flow theory which includes
the effect of the continuous sheet of vortices shed from the
trailing edge. Application of these results was made in sn
analysis of the variation with frequency of the propulsive forces
on an airfoil in an oscillating stream and in an analysis of
the problem of forced vibration of an airfoil in an oscillating
gtream with consideration of the stiffness of the alrfoll and
the position of its torsion axis. The following conclusions
were indicated:

1. The value of the propulsive force acting on an airfoil
in an osclllating stream is sufficiently large to be of practical
importance.

2. The amplitude of vibration of an airfoil in an oscillating
stream is critically dependent on the stiffness of the airfoil
and the position of its torsion axis. TIn general, emplitudes of
vibration are smaller when the torsion axis is ahead of the
quarter-chord point and larger when the torsion axis is behind
the quarter-chord point. Because of the nonuniform resovonse of



18 NACA TN No 1372

a freely hinmed airfoll the usme of such a device for the measurement
of angvlar variations in an oscillating stream would be restricted
to the range of very low frequency in which the response approaches

Langley Memoriael Asrcnautical Laboratory
National Advisory Comiittee for Aeronautics
Lengley Field, Va., April 28, 1947
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APPENDIX A

NONCIRCULATORY VELOCITY POTENTIAL FOR AN

ATRFOTL IN A SINUSOIDAL GUST

The problem of finding the velocity potential for an airfoll
haeving a certain normal v§}ocity distribution is solved by the
method indicated by von Karmsn end Burgers (reference 6, p. 4b).

Represent the wing by ‘a circle (fig. 9). Place a source of
strength 2¢ at the point (31, yl) on the circle and a sink of
strength -2¢ at (;1, -¥;)« The velocity potential of this

gource-~-sink palr in the nctation of this present paper is given by
(reference 5)

The transformation of the circle to its diameter is

y = y1 - ;2; x=x ¥

For the alrfoil in a sinusoidal gust
¢ = vBOei(mt—kxl)

Thus

Y- Y-
&p = ,z%q olotg-1kxy log (,x Xl) + (v yl)
' (- x)? + (v + y1)?

L}
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1
<P=bf dﬁPGJCJ_
-1

vB b 1. - 2 )2 - )2
= ~§g~ olaot U/p e ey log <# x1> ! (y 7L dxy
n 1 ' (x - xl)2 + (y + yl)2

Integration by parts léads to

- %2 glwt o 1y dxy
-xe o (a1)
e 1-x° (x-x)

Lot : S . Y

-ikx
= f(k: X)
IPECEEY
Then
1 a1
;S /q ® %xl (¥ - %+ x) 4
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But, from relation (4) on page 48 of reference 7,

1 eri}ﬂl dx]- .
. 1 - xle
-1

where Jo(k) is a Bessel function of the first kind and zero order.
Therefore,

\Qf-;=‘iJlk-ixi’ A2
3 bt 0( ) (A2)

Equation (A2) is a non<hcmogonenur differential equation of the first
order. The homogeneous part

3F - -qgr
Sk
has as solubtion
where ¢ 1s an arbitrary constant with respect to k. The

particuler solution is obteined by the method of variation of
parameters (reference 8, p. 114), Let

£ = glk, x)e ikx ~ (43)

Then
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Combining this expression with eguation (A2) gives

g§ = iﬂeikao(k)

integration of which leeds to

k
g = isrf oW 55(0) du (Al)
0 .
Combining equations (A3)'and (AR) gives
(k; x) = 1o~ 1kx Jfk eiuxﬂo(u) dun
0

which, when substituted into squation (Al), gives for the non-
clrculatory velocity potential .

- k
? = - 3’__‘1:_[3_0_ w2 oHoteks) }f " elumy (4 an (45)
Jo !
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APPENDIX B

LIFT AND MOMENT FOR NONCIRCULATORY FLOW

Lift

The total force on the airfoil is given by

1
P:'bf Hp dx -
' -1

where, from equation (2)

/
= -00 (X B §9>
fe 20 \b8x+at

But

Prm1 = Pye-y = O

Therefore

1
P = -2ph 2 dx
-1 ot

From equation (1),

1wbvBo 5 tat_-ikx fk 1ux
St T A\/l-x e A e "Jg(u) du

Thus

120b2v8 1 ' X
P= o® glwt fl \/l - x2 g7ikx d.xf eiuxJo(u) du (B2)
- 0

k

(B1)



2k

Let

x2 o"1kX ay fk ei“xJo(u) du
(3]

1
fl(k) = \[1 /l -

Interchanging the order of integration gives

k 1
£, (x) =j; Jo(u) du [1 V- x° el (Wk)x oy

From reference 7, page 48,

J <l> - 2)Ys
vie) = 1 v+32=)r(%7f ( )

i“dt

Therefore

£ (u-

@) (%)f

1 .
= E...;.‘r_g ‘[1 (1 - xa)% ol(u-k)x gy

Ty(u - ¥) = (1 - )8 ot(wk)x gy

Substituting this expression into equation (B4) gives

, : : du .
Fo(k) == J: To(w) 3w - ¥} 5%

1

NACA TN No. 1372

(B3}

(B4)

(B5)
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Tet

u-~X= -y
and

du = ~dw
Then |,

£ (X) «j: Fy(-w) Jlte - w)

k
-xfo L3y () Tk - W) %l’.

3, (%) Tt - w) &

n
=
o(\w

But from reference 7, page 380, 'for pn = 0 and vy > -1

z . I .
£ Tu(1) 3z - v) 2 i*,**;’.(.i_ (56)

Therefore

£1(k) = (k) (57)
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and equation (B2) becomes

2
P = giﬂ%‘io.f’f Iy (k) olat (B8)

Moment

The noncirculatory moment sbout the point x = a (fig. 2)
is obtained from the integrsl

o 1
My = b f Ap(x - a) dx
-1 :

which, combined with equation (2), gives

1 1 1
= 2 ) dx - 2ab2 &0
Mg, prv[l cpdx+2p‘bafl %d&c 2pb [1 xatd::c

By use of equations (1) and (Bi), this equation becomes

- 22 .

2pb<v-B 1 e

M, o= = - 0 lost f V1 - x2 emikx g5 fk o1% 7 (u) du
2k L1 0 0

3 1 .
i eip’ﬁkmavsg ol f VL - 22 o1kx gy fk ol Jo(u) au  (BY)
. - -1 0

21p‘b3wvﬁo
k

. _
+ glwt f x |f1 - x2 omikx dxfk plux Jo(u) du
-1 0
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The first two integrals on the right side .of this expression ars
already known (see equations {B3) and (B7)). In order to obtain
the third integral, let
1 —x k.
fo(k) = f x \/l - x° g"1lkX dxf plux Jo{u) dun (B10)
1 0
Interchange the ordex of integration. Then
k _ 1 :
(k) = f Jo(n) du f x /l « 22 l{u-k)x gy (B11)
1, 0
But
Y T3 _i(u-k); Ll L 2y3fe Ji{uek) ll
1 3 | -1
n _-_‘k)~f (l xp)3/2 i(u-k)t
= v - k) f (1 - x2)3/2 el{u-k)x gy
3 .=
and, from equation (B5)
k/ﬂ (1 - x2)3/2 i(u—k)x dx = EEEEEE;:_E_ (B13)

(u - )2
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Combine equations (B12) and (B13) and substitute into dquation (B11).
Then ' - ' . ' : '

k
du
falk in'[ Jaln) Jo(u - k
oK) = 1 [ 3o(w) Jp(u - ¥)
Let
u-Xk=-v
and
; o
dun = ~-dw
Then

0 k
folk) = 1«]}2 Ja(-w) Jo(k - w‘) %‘Z = _-mj; To(-w) Tk - w) %

=.-1rr'/0k Je(y) Jq(x.— w) %—'-r

which becomes (see equation (B6))
£o(k) = - _1é1£ Jo(k) (B14)
The equation for the moment about x = a can now be wrltten as

oripbienvhe
I

21ob2vR

Mg = - T (k) oX% - Jl(k)em’t
(B15) |

- ﬂp'b3va0
+
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The recurrence formula from reference 7, page 17,

Jn-l'(k) + Jn+1(k) = -QEI-" i.Tn(k)
gives for n=1 R

Jo(k) = ~To(k) + £ 5 (x)

Substitubing this expression into equation (Bl5) and making use of
the definition k = ‘%‘i yields '

a

29

M, = -2ripbZavip, Jp(k) o100 b2y RaTp (k) et - s (B16)
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APPENDIX C
EVALUATION.OF @ (EQUATION (8))
Equation (8) is

. o .
Q= - .V-EQ. ol{dt-k) f elu Jo(u) du
k Yo -

(c1)

' k . ] R .
= - —VEQ. o100t f e»ll(u k) Jo(u) du
k 0

Bub

Ik 1(u-k)
Jaln) du = - k) J a
hé e o(v. u Kcos (u ) Io(u) u

+ iﬁ gin (u - k) Jo(u) du
O

From reference 7, pages 380 and 381,

Jk cos (k - u) Ju(u) du = kJy(k)
0

k
f sin (k - u) Jo{w) au = kJy(k)
0
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Therefore

f ei(u'k) Jo(u) du = kTg(k) - 1kJp(k)

= k[To(k) - 15, ()] ,

and

Q= -vBOEJ‘O(k).- 1Ji(1c)]eiwt | (c2)
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APPENDIX D
CALCULATION OF THE FROPULSIVE FORCE

From equation (1)

(ECE) ol - DB i(wbek) /k o-in Iy(u) au
0%/ 31 - x2/x=-1 kK 0 .

) -<\/1' - ?) 1 R °m.~[-{ oM () am
1 E

- X

The integral on the right side of this equation is the complex
conjugate of that in appendix C. Thus

f o~1(u-k) Jo(u) du = k(Jq -liJl_)
= k(Jy + 17;)

where Jo means Jpn(k), and so forth. Therefore

acp
Bx X=-1 (Vl + x) _75 (o + 1) ° (o1)

Now, for the velocity due to the wake,

?ﬁ.‘) = (e L3 k. —1de0
OX /g1 <Vl_:_£2)x=-l Ty w1
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but (see eguations (7) and (8))

w‘[;(e
1 -1
=[] ——vap=a
2. 1
1 0Tt

Therefore

From reference 7, page 180,

.-}

EAC

and

n®

% ! cos (k cosh t - 32-11 n) cosh nt dt

it
'

¥, (k)

%f sin <k cosht -+ n ﬁ) cosh nt at
0 2

33

(D2)
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vhich lead to, vwhen cosh t is replaced by x,,

Jo(k) = & " ot ¥ xp g
7w |
1 onz-l
® X008 kfxo dxo
Jka-?-
L(K) ﬁf s
1 4]

Equation (D2) becomes now

ECP_I) _ /1 lQ(Jl‘Yo) - 1(Jp *+ Y1)
..ax x==1 l/l + . X==1 V§

(31 + Yo) + 1(Jp - Y3)

and after substitution of the value of § from equation (C2)
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-1 ¥2 (91 + Yo) + 1(Jo - Y1)
L I ] .
- .. . .-,, ‘--'..“:_..-; -t K : ’ (D3)
Combining equations (D1) ‘and "(D.B') ﬁth..‘(s;e QQuaﬁion (18))

¢= [VE_F @3 ¥ %):L-.-l -

gives

6 = = vpole® (Jp + 101) + (g - 13y) 2 -Y0) = (% +T)
'/2"0e [0 1) + (% 1) G %) * 100 - T)

. (D)

r Ll
t

1 N

. CLR 12, v 2. 2
= J Jq J'o +Y1 Yo
-u-e-vBo(cosm'b-!—isinm'b) Jo i1 +

{0y + Y)2 + .(Jo - 1y)°

52 - 302 + Y12 - Y2

2J1(JoJy + YoYq) .
- - + lJl 1l- 3 " 5
(1 + T0)2 + (T - 1a)® (@ * Yo)* + (Jo - ¥)%

_239(Jp71_* Yo¥a)
(T, + Yo)2 + (Jp - Tq)?

the real part of vhich is

C = ﬁvBO[V(X +Y) cos wt - \/(x - Y) sin th (D5)
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vhere .
<o o - 1Y)
(Jo - ¥p)% + (3 + ¥o)®
- (2 2 1
WS (Fo - Yp)2 + (310t Y)?
and

Y= oy, - 11%0)2 (3 - ¥)2 - (31 + %0)?]

| [(Jo - 17)® + Iy YQ)QJ2 .

; (n'g'k)e [-QO : 11)2 - (5 +¥)°

(Jo - ¥3)% + (31 + Y6)2]2' |

and use has been made of the formula (reference Ty Do 77)

2
JOY]- - JlYO = "‘. ;‘-C-};_'

Substituting equation (D5) into (see equation (17))

8 = n'an
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glives

a
L}

.:tpbveﬁoe EX + Y) coslwt + (X - ¥) sinzw'b,

-2 ;;/XE -.Y2. gin ot cos wt_]

pbvoBo2 (x +Y cos 2 ot - X2 - Y2 sin 2 a)t>

Tetting Z =YX - Y2 . gives flnally

8 = Ttp'bvaﬁoe_' (X + Y cos 2wt - Z sin 2 wt) (D6)
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Figure 3.— Variation with wave lenglh of stream oscillations of the

coefficients X, Y, and Z appoearing m e equation for the propulsive

Force.
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Figure 4 .— Var/aﬁon wrth reduced rreguency of stream oscillatrons
of the coefficren?s Y and Z.
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Frgure 6. — Varjiation with rediced 7reguency of stream

oscillations of the response ofan airfos! finged of
7s  feading edge. .
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Figure 9.— Conformal representafion of the wing profile
by a circle.lrinear guanfh‘/es nondadimenrn sronal with
respect 7 b.)
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